
SensorViz: Visualizing Sensor Data Across Diferent Stages of
Prototyping Interactive Objects

Yoonji Kim1,2, Junyi Zhu1, Mihir Trivedi1, 1 1 Dishita G Turakhia , Ngai Hang Wu , Donghyeon Ko1,
Michael Wessely1, Stefanie Mueller1

MIT CSAIL1, Chung-Ang 2 University

yoonji.h.kim@gmail.com,{junyizhu;mihirt;dishita;crazywu}@mit.edu,donghyeon.ko@kaist.ac.kr,
{wessely;stefanie.mueller}@mit.edu

Figure 1: (a) Before buying sensors, makers can visualize sensor data from the datasheet to get a frst idea of what sensors can
sense. (b) Before physically building the prototype, makers can visualize sensor data in AR to see what sensors can sense in
the context in which the prototype will be used. (c) After assembling the physical prototype, makers can visualize live data
either in the 3D editor or via AR to verify that the sensors work as expected and to make further changes as needed.

ABSTRACT
In this paper, we propose SensorViz, a visualization tool that sup-
ports novice makers during diferent stages of prototyping with
sensors. SensorViz provides three modes of visualization: (1) visual-
izing datasheet specifcations before buying sensors, (2) visualizing
sensor interaction with the environment via AR before building the
physical prototype, and (3) visualizing live/recorded sensor data to
test the assembled prototype. SensorViz includes a library of visu-
alization primitives for diferent types of sensor data and a sensor
database builder, which once a new sensor is added automatically
creates a matching visualization by composing visualization prim-
itives. Our user study with 12 makers shows that users are more
efective in selecting sensors and confguring sensor layouts using
SensorViz compared to traditional prototyping utilizing datasheets
and manual testing on the prototype. Our post hoc interviews in-
dicate that SensorViz reduces trial and error by allowing makers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specifc permission and/or a
fee. Request permissions from permissions@acm.org.
DIS ’22, June 13–17, 2022, Virtual Event, Australia
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9358-4/22/06. . . $15.00
https://doi.org/10.1145/3532106.3533481

to explore sensor positions on the prototype early in the design
process.

CCS CONCEPTS
• Human-centered computing → User interface toolkits.

KEYWORDS
sensor visualization, electronic prototyping, personal fabrication

ACM Reference Format:
Yoonji Kim1, 2, Junyi Zhu1, Mihir Trivedi1, Dishita G Turakhia1, Ngai Hang
Wu1, Donghyeon Ko1, Michael Wessely1, Stefanie Mueller1. 2022. SensorViz:
Visualizing Sensor Data Across Diferent Stages of Prototyping Interactive
Objects. In Designing Interactive Systems Conference (DIS ’22), June 13–17,
2022, Virtual Event, Australia. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3532106.3533481

1 INTRODUCTION
Over the past decades, the availability of sensors has increased
substantially and enabled makers and designers to prototype inter-
active objects rapidly and at low cost. However, this large variety
of components also comes with the challenge of selecting the right
sensor from many similar components to fnd the one that best fts
the use case at hand. Since each sensor has its own specifcation,
understanding what each sensor can sense and how it will work
on a prototype can be a time-consuming process.

987

https://doi.org/10.1145/3532106.3533481
https://doi.org/10.1145/3532106.3533481
https://doi.org/10.1145/3532106.3533481
mailto:permissions@acm.org
mailto:wessely;stefanie.mueller}@mit.edu

DIS ’22, June 13–17, 2022, Virtual Event, Australia Kim, et al.

In today’s workfow, makers have two options to increase their
understanding of how sensors behave. First, makers can consult
each sensor’s datasheet. However, extracting information from a
datasheet can be cumbersome and confusing since the sensing
information may be buried among the chip design, schematic, and
other technical aspects. In addition, datasheets are not standardized,
which makes comparing sensors with each other a difcult task.
Furthermore, since datasheets are text documents, it can be hard to
picture what sensors can sense when placed on a prototype.

Alternatively, makers can physically explore what sensors can
sense by wiring them up. However, this comes with its own chal-
lenges since makers have to buy diferent sensors upfront to test
which one works best for their prototype. They have to write code
for each sensor before they can start assessing if the sensors are
suitable. Further, the sensor data is either represented as printed
text in a terminal or as a graph in a plotter tool, and not as spatial
information in 3D.

Several tools for prototyping robot and aircraft applications can
visualize sensor data in 3D. Gazebo in ROS [27] and SensorFu-
sion [29], for instance, allow users to defne sensors and their 3D
position via scripts and then visualize the resulting sensor data.
BlenSor [14] takes this a step further by allowing users to inter-
act directly with the sensors without the need for programming.
However, after defning the sensors, users have to recompile the
3D environment to see the visualization results, which does not
allow for real-time exploration. While users can import 3D models,
users cannot edit their geometry while the sensor visualization is
on-going. Finally, while users can create custom sensors via scripts,
users have to create their own visualizations for each sensor.

In this paper, we present SensorViz, a visualization tool that sup-
ports novice makers by visualizing sensor information at each stage
of the prototyping process. Makers can change both the sensor lay-
out and the prototype 3D model and see the visualization update in
real-time. In the early stages of design, SensorViz supports makers
in deciding which sensors to select and how to lay them out by
visualizing information from the sensor’s datasheet. Before makers
fabricate the prototype, they can use SensorViz’s AR visualization
to see the prototype, sensors, and sensor data in the context of the
environment. Finally, once makers assemble the prototype, they
can visualize live sensor data to verify that the sensors work as
expected. SensorViz automatically generates the visualizations for
diferent types of sensor data based on its library of visualization
primitives. Thus, to add a new sensor, users only have to provide
its specifcation and a matching visualization is generated automat-
ically. Note that the focus of our paper is on the visualization of
sensor data. Generating mounts, splitting geometry, and routing
wires has been done in prior work and is not our contribution.

In summary, we contribute:

• a formative study with 12 makers to understand challenges
makers face when using sensors for interactive prototypes;

• a visualization tool that supports makers during the diferent
stages of prototyping by visualizing sensor data from the
datasheet, overlaying data onto the environment via AR, and
displaying live/recorded usage data;

• a library of visualization primitives for diferent types of
sensor data, and a sensor database builder, which once a new

sensor is added automatically creates a matching visualiza-
tion by composing visualization primitives;

• a user study with 12 participants showing that SensorViz
signifcantly speeds up the prototyping process (F(1,10) =
7.61,p < 0.05) while the resulting sensor layouts have sig-
nifcantly better coverage (F(1,10) = 62.61,p < 0.001) of the
target sensing area.

2 RELATED WORK
Our work is related to how makers prototype interactive objects
with respect to placing electronics on 3D object geometries, and
how makers are supported today in visualizing sensor information.

2.1 Prototyping Interactive Objects
HCI researchers recognized early that “prototyping is a key ac-
tivity within the design of interactive systems” [8]. However, its
complexity in programming and circuit design also comes with
challenges for makers and designers (Booth et al. [5]). To assist
makers with programming, several tools automatically generate
code based on high-level input provided via a component diagram
that the maker draws (Trigger-Action-Circuits [1]), via a confgu-
ration interface that the maker selects hardware behavior criteria
(Adapt2Learn [31]), or via a conversation the maker has with a
virtual agent (HeyTeddy [16]). To facilitate hardware prototyping,
researchers developed tools that help makers iterate on circuit
layouts before physically building them (VirtualComponent [17],
VirtualWire [20]). In addition, tools, such as AutoFritz [22] and
SchemaBoard [18], support makers in creating circuits by provid-
ing guidance where to place components onto the breadboard. To
support beginners in learning how to assemble circuits, simpli-
fed hardware modules (BitBlox [10]) can also direct the user how
to connect components. While these systems support makers in
building circuitry and sensors, users still have to estimate sensor
properties, such as the sensor’s range by reading complicated sensor
datasheets. In contrast, SensorViz enables an intuitive understand-
ing of the sensor’s capabilities with visualizations situated on the
digital prototype.

2.2 Integrating Electronics with 3D Prototypes
Several researchers have explored how to facilitate prototyping of
electronics in the context of a 3D model’s geometry, for instance,
by automatically packing the electronics inside the prototype and
modifying it to contain mounts for the electronics (Ashbrook et
al. [2]). SurfCuit [32] automatically creates a layout of electronic
components based on the schematic and then generates the fabri-
cation fles that contain grooves for the wiring. PHUI-kit [15] lets
makers place electronic components on the surface of a 3D model
and generates custom mounts for holding them in place. Similarly,
Plain2Fun[33] and MorphSensor [36] support users in placing elec-
tronic components onto 3D models and generate custom fabrica-
tion fles. CurveBoards [35], in contrast, allow makers to assemble
electronic components directly on the prototype by integrating
breadboards into the prototype’s surface. While all of these tools
support makers in integrating electronics with prototypes, they do
not visualize information related to the electronic components.

988

SensorViz: Visualizing Sensor Data Across Diferent Stages of Prototyping Interactive Objects DIS ’22, June 13–17, 2022, Virtual Event, Australia

2.3 Visualization in Prototyping and Situated
Visualization

Several tools visualize information related to electronic compo-
nents. One line of work focuses on helping makers understand
the internal state of their circuits. Spark [4] and LightUp [9] are
tools that visualize moving electrons as dots in AR, which can help
makers fnd wiring mistakes. Similarly, ToastBoard [11] and Cur-
rentViz [34] visualize voltages and current fows by overlaying the
information onto the breadboard. While these tools help makers
debug their circuits, they are not designed to support makers in
choosing which sensor is appropriate for their prototype. Other
work visualizes sensor data as 2D graphs either for testing circuits
(Scanalog [28], Bifröst [23]) or for fnding thresholds for detecting
user interaction (Astral [19]). In addition, TinkerCAD [3] provides
a separate 2D electronic editor that shows information such as a dis-
tance sensor’s feld of view in 2D. However, these tools do not show
spatial information to help makers place sensors on prototypes.

Another body of research explores situated visualization [7], e.g.
in the context of pervasive displays [12], and AR prototyping [21].
In this feld, several works explore how to support makers in better
understanding what sensors can sense when placed on a prototype
by visualizing spatial sensor data. TinkerCAD [3], for instance,
provides a separate 2D electronic editor that shows information
such as a distance sensor’s feld of view in 2D. To contextualize
sensor data in a 3D environment, Radu et al. [25] use AR to overlay
3D graphics that visualize magnetic felds around coils and magnets.
In Virtual Makerspaces [24], the authors also visualized circuit
signals in AR. However, the work uses predefned graphics and is
set up as a learning environment and not for prototyping.

Finally, expert tools for prototyping robot and aircraft sensing ap-
plications, such as Gazebo in ROS [27] and SensorFusion [29], have
been developed. However, these tools are developed for engineering
applications and require users to write scripts to defne the sensors’
positions and geometry. BlenSor [14] facilitates this process by
allowing users to directly interact with the sensors. However, users
have to recompile the environment after every change, which does
not allow for real-time exploration. Further, users cannot modify
the 3D model while the sensor visualization is on-going. Finally,
while users can create custom sensors via scripts, users have to
create their own visualizations for each sensor.

3 FORMATIVE STUDY
To better understand the issues novice makers face when using
sensors to develop prototypes, we interviewed 12 makers (9m, 3f,
aged 23-29 (M=25.6, SD=2.5)) who are students with engineering
or design backgrounds from our institution. They had novice ex-
perience in prototyping with sensors (3-5 previous projects) but
did not consider themselves experts and had not taken a class from
us before. The participants refected on their prior experiences
with sensors via semi-structured interviews (30 min each) with
10 standardized questions. Participants were compensated with 10
USD in local currency. We analyzed our interviews by transcribing
the audio recordings and then conducting open and axial coding.
Participants shared that they encountered many difculties when
using sensors:

Difculty in imagining what sensors can sense: Several mak-
ers stated that it was difcult to estimate what a sensor can sense
if a prototype has not yet been built. P12 explained: “I made a light
that moves according to a person’s posture. I designed the model
in several parts and printed it out. After I assembled it, I found that
sometimes the distance sensor sees the motor-driven joint when
the joint moves. The distance sensor’s viewing angle was wider
than I thought.” P3 also stated that she had difculties estimating
the position of sensors due to the scale of the prototype, saying: “I
made an interactive curtain that recognizes gestures, and it took a
lot of time to attach the sensors, test, and adjust them. [...] Because
of its large size, it was difcult to imagine where and how to install
the sensors before building the prototype.” P4 said that they had
experienced a delay in the prototyping process since they had se-
lected the wrong sensor and had to purchase a diferent one: “I frst
needed to see the sensor data log [...] to better understand what
the sensor’s can sense. I could not do other work until the newly
ordered sensor arrived.”

Re-printing time due to sensor position adjustment: Mul-
tiple makers stated that because they had difculties picturing what
the sensors can sense, they followed a trial-and-error process in
which they repeatedly modifed both the sensors’ positions and the
prototype. P8 said: “I walked around with the prototype to get raw
data. [...] It didn’t work as expected. I kept relocating the sensors and
modifed the model several times, which were cumbersome tasks.”
Modifying the 3D model and reprinting the prototype, however,
slowed down the prototyping process. As P10 reported: “to change
the sensor’s position, it is often necessary to reprint the 3D object,
but as the 3D printing time is long, the overall prototyping time is
longer and more materials are used.”. Some makers reported that
they tried to use simulation tools. P2 had used MATLAB but stated
“it was not much help for modeling and laying out the sensors on
the prototype in real-time”. P1 noted: “it [MATLAB] might be good
for simulating sensor signals, but not suitable for prototyping.”

Impact of prototype geometry on sensor choice and place-
ment: Participants also pointed out that the prototype geometry in-
fuenced which sensors they chose and where they placed them. P11
stated: “I made a children’s toothbrush for my graduation project.
But when I printed it, the toothbrush handle was smaller than I
thought, so I swapped the touch sensor with a photoresistor.”

Using the fewest sensors to reduce possible errors: Several
participants mentioned that they tried to use a minimum number of
sensors to reduce cost and to prevent the circuit from becoming too
complex. P11 stated: “I usually consider lowering the complexity
of the circuit. Using more components increases the possibility of
bugs both for software and hardware. So I try to cover the sensing
area with fewer sensors. However, this is always accompanied by
worries about blind spots.”

Difculties when selecting sensors based on datasheets:
Several participants had difculties when comparing sensors from
diferent manufacturers. P12 commented: “It isn’t easy to fnd what
I need because a lot of data is explained [in words]. Moreover, the
document format is all diferent for each manufacturer, so it is com-
plicated.” P6 reported that he only selects popular sensors because

989

DIS ’22, June 13–17, 2022, Virtual Event, Australia Kim, et al.

Figure 2: SensorViz user interface. (a) and (b) are the SensorViz main window. (b) Users can select the shape, size, and distance
for the target sensing area. (c) Users can select and import sensor models in the list. (d) Users can select the visualization mode
for static, real-time, textual, and color of the visualization.

it is easy to fnd information in online discussion boards, even if
those sensors are not ideal for the use case.

In summary, the fndings from our formative study highlight
that makers experience difculties when using sensors to create
interactive prototypes due to missing contextualized information
of what sensors see and how they ft onto the prototype geometry.
We thus designed the SensorViz toolkit to help makers better under-
stand what a sensor can sense in context of the environment and
the object’s geometry. To accomplish this, we developed a library
of visualization primitives for diferent types of sensor data. The
visualizations are overlaid either on the digital prototype in a 3D
editor or the physical prototype in the real world through an AR
visualization. Our sensor database builder allows makers to import
sensors into our visualization environment without the need to
read a datasheet. SensorViz also provides live and recorded sensor
data visualization, which eases the difculties of resolving errors
by allowing users to test and debug their prototype in situ.

4 SENSORVIZ
SensorViz (Figure 2) is a visualization tool that supports novice
makers during the diferent stages of prototyping with sensors by
visualizing sensor data alongside the prototype geometry, both
in a digital 3D editor and via an AR overlay. Makers defne the
position of their sensors by placing them onto the 3D model of the
prototype. When makers change either the model or the sensors,
they see the sensor visualization update in real-time, which allows
for interactive exploration and fast design iteration to decide which
sensors to use, how to lay them out, and how to adjust the model
geometry.

4.1 Visualizations for Diferent Stages of
Prototyping with Sensors

SensorViz is designed to support makers through three types of
visualizations for diferent stages of prototyping with sensors.

Sensor Specifcations from Datasheet: At the beginning of
the prototyping process before makers buy sensors, SensorViz helps
them to explore which sensors are most suitable for their prototype,

how many they need, and where to place them by visualizing infor-
mation from the sensors’ data sheets, such as the min/max range,
feld of view, and resolution, in the 3D editor together with the pro-
totype. Makers only have to select the sensor from the SensorViz
database to load it into the 3D editor and see its sensor visualiza-
tion. When makers change the position of the sensor on the virtual
prototype, the visualization automatically updates in real-time. Sen-
sorViz also displays how well the sensors cover a specifed sensing
area. Makers defne the area they want to sense; SensorViz then
computes the intersection of the sensors’ feld of view with the
area. While makers often have to guess the sensor’s capabilities
from abstract schematics and tables in its datasheet before buying
the sensor, SensorViz ofers a 3D visualization directly from the
datasheet that enables makers to get a spatial understanding of the
sensor’s range and functionality in the early stages of prototyping.

Sensor Data Overlay over the Physical Prototype via AR:
To support makers in evaluating their prototype in context before
physically building it, SensorViz provides an AR overlay that can be
displayed using either a tablet, smartphone, or head-mounted AR
display (e.g., HoloLens). Makers start by opening the AR application
(Fologram [13]) on their AR device. In the SensorViz UI, makers
then select the ’Start AR’ option to generate a QR code. The QR code
can then be scanned with the AR application to synchronize the
mobile AR device with the computer to start streaming data from
SensorViz. The AR overlay shows the virtual prototype, the virtual
sensors, and the corresponding sensor visualization. To ensure the
correct size of the prototype and sensor visualization in AR, the
AR application has a built-in feature to detect the size of objects in
the environment and then scales the prototype in AR accordingly.
To position the prototype in AR, the AR application automatically
detects the ground plane in the environment, which SensorViz
then sets to be equal to the ground plane in the 3D editor. The
AR overlay is synchronized with the 3D editor, i.e., changes in the
3D editor are refected in the AR overlay in real-time. Makers can
toggle the visualization of each sensor on or of through the AR
interface. Once makers fabricate the prototype and buy the sensors,
they can use the AR overlay to help with assembly: The position of
sensors is shown in the AR overlay, makers thus only have to align

990

SensorViz: Visualizing Sensor Data Across Diferent Stages of Prototyping Interactive Objects DIS ’22, June 13–17, 2022, Virtual Event, Australia

the physical sensors with the virtual sensors to create a matching
physical sensor layout.

Live and Recorded Sensor Data Visualization: To support
makers in testing if their physical prototype works, SensorViz pro-
vides makers with functionality to visualize live data. Makers down-
load the custom Arduino code (.ino) from the SensorViz editor and
then upload it to an Arduino board connected to the sensor. Makers
then select the sensor in SensorViz and choose the port from which
the Arduino is streaming the sensor data. When SensorViz receives
live data through the port, it visualizes it. SensorViz also allows
makers to record data frst before visualizing it. This can be useful
for prototypes for which data collection may take a long time or
that require data collection in the wild where makers do not have
access to the 3D editor. To record sensor data, makers prepare the
sensor using the same steps as for live data but use the ’record data’
button in the SensorViz data recorder, which is implemented as a
separate program that can run on a portable computer (Raspberry
Pi). The recorded data is then saved as a fle. Makers can then replay
the recorded data using SensorViz to see it visualized. By replaying
diferent parts of the data, makers can test how well the prototype
works across diferent interaction scenarios.

The three visualizations support makers in the diferent stages
of prototyping with sensors from exploring which sensors to use
and how to lay them out before building the prototype, to further
refning the sensor layout while visualizing the prototype in AR in
the context in which it will be used, and fnally streaming live data
or collecting recorded data to verify that the prototype works as
intended.

4.2 Prototyping Walkthrough
We next illustrate SensorViz’s visualizations through the example
of prototyping a wind chime in the form of a bird that hangs from
a tree. We want to create a wind chime that uses changes in wind
speed and wind direction to modulate sound; further, when a person
is walking close to it (within 1.5 meters), it should play a special
melody. The wind chime should also sense temperature, which we
will display on an LED. We chose this example for our walkthrough
since our target users are novice makers, such as students in an
introductory electronics class who build simple prototypes. For
instance, 300 students in our class used on average 2.38 sensors
across 72 group projects. Schemaboard [18] also showed that 5,083
making projects used a median of 7 components, which included
not only sensors but also buttons. The fnal prototype from our
walkthrough has 6 sensors, which matches the complexity of the
prototypes found in the study.

Trade-Of Between Diferent Sensors: We utilize wind sen-
sors to sense wind speed and wind direction. In the SensorViz
toolbar, we see that the wind sensor has a 60◦ feld of view. Since
we want to sense wind from any angle (360◦), we select 6 wind
sensors. We turn on the datasheet visualization, which shows each
sensor’s feld-of-view, and use it to determine where to place the
wind sensors to avoid overlapping sensing areas. We fnd that the
geometry of the wind chime does not allow us to place the sensors
to achieve full coverage (Figure 3a). We modify the geometry of

Figure 3: Placing sensor models and visualizing sensing
range. (a) We place six wind sensors on the wind chime ge-
ometry, but still have blind spots. (b) We thus decide to re-
move two wind sensors and add an accelerometer to detect
overall motion.

the wind chime but fnd it compromises the aesthetics too much.
We therefore decide to use only 4 wind sensors, one for each car-
dinal wind direction, and to compensate for the ’blind spots’ with
an accelerometer that will detect motion caused by diferent wind
speeds (Figure 3b).

Comparing Diferent Sensor Resolutions: When selecting
the accelerometer, we see that there are three options: 0.01/mG,
0.4/mG, and 0.6/mG sensing resolution. Since we want the wind
chime to be sensitive to even minor movements when the wind
blows, we choose the accelerometer with the highest resolution. We
then place the accelerometer onto a free spot on the wind chime.

Ensuring Sensing Area Coverage: Next, we choose a set of
distance sensors to detect if a person is walking within 1.5 meters.
Before positioning the sensors, we create a new sensing area around
the wind chime by toggling on the ’Create Sensing Area’ button.
We select the cylinder from the list of sensing volumes and set its
scale to a radius of 1.5m. As soon as we place each distance sensor
on the wind chime, SensorViz visualizes which part of the sensing
area each distance sensor covers (Figure 4a).

Modifying Prototype Geometry: While positioning one of
the distance sensors, we notice that the wind chime geometry, i.e.,
the bird’s tail, interferes with its feld of view (Figure 4b). To solve

Figure 4: Visualizing sensing area coverage and interference:
(a) Visualized sensing range and target area in SensorViz. (b)
Finding overlaps between sensing range and prototype ob-
ject. (c) Modifying prototype geometry to add angled sur-
faces for mounting the sensors in a tilted position.

991

DIS ’22, June 13–17, 2022, Virtual Event, Australia Kim, et al.

Figure 5: The AR visualization of our virtual wind chime
hanging on the tree shows that the distance sensors cover
would only detect adults and not small children walking by.

this issue, we frst bend the bird’s tail upward and then also curve
the geometry by adding wings to the bird (Figure 4c), which allows
us to tilt the distance sensor to avoid interference. We encounter
a similar issue when placing the temperature sensor. We want to
place the temperature sensor under the bird’s tail to completely
cover it to avoid direct sunlight. However, we notice that the tail
is too narrow to fully cover the sensor. We therefore make the tail
wider. To fnalize our prototype, we also add a speaker for playing
the sounds and an LED that we will use to display temperature.

Visualizing Virtual Prototype in Physical Context: Before
we fabricate the wind chime, we visualize what its sensors can
sense via AR in the context of the tree onto which it will be hung.
We frst change the position of our wind chime in the 3D editor to
be at the level of the tree branch (1.5m). We then use our handheld
tablet, open the AR application, and scan the QR code generated
by SensorViz to sync our tablet with the SensorViz 3D editor. We
hold our tablet up in front of the tree and confrm the detected
ground plane, which then positions our wind chime at the height
of the branch. Based on the AR visualization, we see that we need
to adjust the angle of the distance sensors to point them further
down to be able to also detect children within the sensor’s feld of
view (Figure 5). We make the changes in SensorViz and confrm via
AR that the sensing coverage is now appropriate.

Mounting Physical Sensors Based on Virtual Sensor Posi-
tions: After 3D printing the wind chime, we move on to mount
the physical sensors onto the 3D printed prototype. We take each
physical sensor and align it with the matching virtual AR sensor
overlay.

Using Live Data: After we assemble the wind chime, we want
to verify that it works as intended by interacting with it and vi-
sualizing the live data from the sensors. We frst upload the code
for the sensors onto a microcontroller and then select the port for
streaming data in SensorViz. We then hang the wind chime outside
onto the tree and walk around it. Since there is no wind, we blow
air onto the wind chime from diferent directions. The distance

sensors and wind sensors record data as expected, but we notice
that the accelerometer values do not change much.

Using Recorded Data: Since we are unsure if the accelerometer
behaves diferently when the wind chime is exposed to actual wind
rather than us blowing air on it, we decide to record sensor data
for a full day using the SensorViz data recorder. Replaying the
data later confrms that the accelerometer does pick up on the
wind as intended. The recorded data also shows that the wind is
coming mostly from two directions. We therefore take a note that
for another prototype iteration, we will remove the other wind
sensors to save cost and reduce the complexity of wiring.

5 LIBRARY OF VISUALIZATION PRIMITIVES
To visualize sensor information in a coherent manner, SensorViz
contains a library of visualization primitives (Figure 6) that can be
composed into more complex visualizations for various sensors.

5.1 Visualization Attributes
Dimensionality: We represent discrete data as a point and con-

tinuous data as a bar. We represent directional data as bars in
diferent directions. For volumetric data, we display the data as
a 3D volumetric shape (e.g., a cone or hemisphere). Dimensional
information is rendered as a black outline with no infll.

Range: To visualize the range of a sensor, we use the min/max
values from the datasheet as the bounds of the visualization. For
continuous non-spatial and directional data, we defne the lower
bound of the visualization to be equal to the minimum value and
the upper bound of the visualization to be equal to the maximum
value specifed in the datasheet. Thus, as a result, the bar of a
temperature sensor with a range of 0-30◦C is half as long as for a
sensor with 0-60◦C. To ensure that the visualization is not too large

Figure 6: To visualize sensor information in a coherent man-
ner, we created a library of visualization primitives. These
primitives represent non-spatial and spatial data using at-
tributes such as dimensions, range, resolution, fll, and tex-
tual information.

992

SensorViz: Visualizing Sensor Data Across Diferent Stages of Prototyping Interactive Objects DIS ’22, June 13–17, 2022, Virtual Event, Australia

Figure 7: In addition to the visualization primitives, Sen-
sorViz also supports makers with additional visualization
attributes, such as aggregate data, color, and metaphors.

and obstructing the view, SensorViz applies a scaling factor to the
length of the bar that by default is the same for all sensors with
the same measurement unit (e.g., a scaling factor of 0.1 for ◦C leads
to visualizations of 3cm for 0-30◦C and 6cm for 0-60◦C). Makers
can override the default scaling factor as needed. For spatial data,
the visualization shows the lower and upper bounds of the sensing
volume in the size as specifed in the datasheet.

Resolution: We visualize resolution by splitting the bar or vol-
ume into segments, with smaller segments representing higher
sensor resolutions than larger segments. We compute the segment
size by dividing the sensor’s output bit resolution by the range
of the sensor. For instance, a 12-bit temperature sensor with 4096
diferent values for its sensor readings and a sensing range from
-55 to 150◦C has a resolution of 205/4096◦C = 0.05◦C. To ensure
that the segments have an appropriate size in the visualization,
SensorViz applies a scaling factor that by default is the same for all
sensors that use the same measurement unit (e.g., a scaling factor
of 2 for ◦C leads to visualizations with 40 segments (2/0.05) for the
12-bit sensor). Makers can override the scaling factor as needed.

Sensor Values: We visualize live sensor values by flling in the
point, bar, or volume. For discrete values, if a ’zero’ is read, the
point is rendered in 0% opacity and if a ’one’ is read, it is rendered
in 100% opacity. Makers can diferentiate between a ’zero’ reading
and ’no data’ using the text label that shows the current value. For
continuous values, the larger the received sensor values, the more
of the bar or the volume is rendered in 100% opacity.

Textual information: We use labels to display the range (min/max),
the resolution, and the current sensor value. For directional data,
we also label the axes information, and for volumetric data, we
label the angle of the feld of view. Makers can choose in the user
interface which information they want to display.

5.2 Additional Visualizations Attributes
In addition to the basic visualization primitives, SensorViz ofers
additional visualizations to support makers.

Aggregate Data: Many sensors measure multiple sensor val-
ues, which when aggregated provide higher-level information. For
instance, accelerometers provide three separate values for acceler-
ation in x, y, z but for many use cases seeing the aggregate value,
i.e., the orientation in which the object is actually moving, is more
helpful. SensorViz therefore provides a visualization that combines
the three individual axis measurements into one directional vector.

Color Coding: Where appropriate, SensorViz uses color to facil-
itate makers’ understanding of the sensor data and to help makers
avoid mistakes. For instance, for temperature sensors, SensorViz
colors the sensor data in blue for low temperatures and in red for
high temperatures. To reduce potential mistakes when makers use
digital hall efect sensors, SensorViz colors them in blue because
they can only detect the red South pole of magnets. Finally, to
prevent makers from confusing axes when prototyping with ac-
celerometers, SensorViz colors the axes using the common coloring
scheme of red for the x, green for the y, and blue for the z-axis.

Metaphors: Finally, metaphors can help makers assess what a
sensor is for and if it works as expected. In SensorViz, makers have
the option to activate metaphors for certain sensors to visualize
high-level behavior. For instance, wind sensors in SensorViz are

Figure 8: Composition of sensor data visualization for non-spatial sensors: (a,b) Two diferent temperature sensors, (c) humid-
ity sensor.

993

DIS ’22, June 13–17, 2022, Virtual Event, Australia Kim, et al.

Figure 9: Composition of sensor data visualization for directional sensors: (a) 2-axis accelerometer, (b) 3-axis accelerometer,
(c) 3-axis magnetometer.

visualized as a sail that blows in the wind when sensors report data,
and pulse oximeters are visualized as a beating heart.

5.3 Composition of Visualization Primitives
Using the visualization primitives, SensorViz can represent various
types of sensors.

Non-Spatial Sensors (Temperature/Humidity): Figure 8 shows
the visualization of diferent non-spatial sensors, such as tempera-
ture and humidity sensors, all using the same visualization primi-
tives. Since the analog data of the sensors is non-spatial, SensorViz
represents it as a bar. Each sensor’s bar is split into a number of
segments based on the resolution of the sensor data. The incom-
ing sensor signals are represented as opaque areas on the bar. The
min/max values of the sensor and the currently read values are
added as text labels to the bar. The humidity sensor uses the de-
fault visualization, i.e., displays sensor data in black (Figure 8b),
while the temperature sensor data is colored in blue/red for cold/hot
temperatures (Figure 8a).

Directional Sensors (Accelerometers/Magnetometers): Fig-
ure 9 shows the visualization of diferent directional sensors, such
as 2-axis and 3-axis accelerometers and magnetometers, all using
the same visualization primitives. The analog data for each of the
axes is represented as a bar pointing in the direction from which
the data is retrieved. Each axis is split into a number of segments
based on the incoming data. The incoming sensor signals are repre-
sented on each axis as opaque overlays. The axis information (x,y,z),

min/max possible readings, and the currently read value are added
as text labels to the visualizations. The combined data is shown as
an aggregate vector and each axis is colored based on its direction.

Volumetric Sensors (Hall Efect, Distance, Wind Sensor):
Figure 10 shows diferent types of volumetric sensors, i.e., a hall
efect, distance, and wind sensor. All sensors are represented with
sensing volumes, i.e., the hall efect sensor as a sensing hemisphere,
and the distance and wind sensor as sensing cones. For the hall efect
and the distance sensor, the incoming data is visualized directly
on the sensing volume, i.e., for the discrete hall efect sensor the
hemisphere is either opaque or translucent (Figure 10a), and for the
analog distance sensor the cone is made opaque up to the level of
the sensor value (Figure 10b). While by default, the data from the
wind sensor is also visualized on the cone, we override the default
and display it as a bar since the amount of wind is non-spatial and
thus does not refer to a specifc distance from the sensor. The angle
or radius of the sensor, min/max, and the currently read value are
added as text labels to the visualizations. The hall efect sensor is
colored ’blue’ to show that it only senses the ’red’ South pole.

5.4 Sensor Database Builder
Sensor visualizations are automatically created based on the infor-
mation about each sensor in the SensorViz sensor database. The
database currently has 19 sensors, which correspond to common
sensors used by novice makers (i.e., 300 students in our class used
only 19 diferent sensors across 72 group projects although they
could buy any sensor). All the sensors in the database are saved in a

Figure 10: Composition of sensor data visualization for spatial sensors: (a) hall efect sensor, (b) distance sensor, (c) wind sensor.

994

SensorViz: Visualizing Sensor Data Across Diferent Stages of Prototyping Interactive Objects DIS ’22, June 13–17, 2022, Virtual Event, Australia

Figure 11: Sensor Database Builder: (a) Adding information from the datasheet. (b) Recording sensors’ live data.

single fle (.json). The fle also contains a reference to the program
(.ino) that is uploaded to an Arduino connected to the sensor for
live data visualization.

Sensor Database Builder: To facilitate adding new sensors,
we built a sensor database builder (Figure 11a). It is targeted at
expert makers who are able to understand the information from the
datasheet and supports them populating the database by specifying
the require data that should get extracted from the datasheet. Once
a maker added a sensor to the database, it becomes available in the
SensorViz 3D editor. The sensor database can be shared with other
makers by copying the .json fle that contains all sensors and the
.ino fles that contain the code for each sensor. We next describe in
more detail how expert makers can use the sensor database builder
to add new sensors to SensorViz:

Adding Information from the Datasheet: To add a sensor to
the SensorViz database, makers have to defne if the sensor is a
discrete/continuous sensor, if it contains directional information
(x,y,z) or senses a volume (i.e., has an angle for its feld of view). In
addition, makers have to specify the range of the sensor data, the
resolution of the sensor, and which textual information should be
displayed. Furthermore, they need to specify if color coding should
be used and if they want to provide a custom metaphor.

Automatically Generated Visualization: Once the maker saves
the information, SensorViz automatically adds the sensor to the
.json fle and afterwards shows the sensor in the SensorViz sensor
list. When makers load the sensor into the 3D editor, the visual-
ization is automatically created by matching the information from
the database to the visualization primitives. For the sensor’s 3D
model, SensorViz frst searches its 3D model collection and if the
sensor is not available, it uses a default sensor model. Makers can
also specify a sensor 3D model fle in case they have it available.

Writing the Code for Live Data Visualization: Makers can
extend the visualization of the new sensor to include live data (Fig-
ure 11b). For this, makers frst have to write the code for the sensor
using SensorViz’s code template (.ino). The template contains a
returnSensorData() function, which prints the live sensor data to

the serial monitor, allowing SensorViz to retrieve the data. When
printing data to the serial monitor, makers need to prefx the sensor
data with the attribute name from the .json fle. Using this conven-
tion, both raw sensor values and aggregate data can be reported
back to SensorViz. If sensors have multiple variables (accelerome-
ter), SensorViz uses a ‘,’ as data separator. Once makers upload the
program, the live data visualization for the new sensor becomes
available in SensorViz.

6 IMPLEMENTATION
Figure 12 shows the SensorViz system workfow. SensorViz builds
on the MorphSensor 3D editing environment [36] in Rhino3D and
is implemented as a Grasshopper plugin. To show SensorViz vi-
sualizations in AR, we use the Fologram plugin for Rhino3D. Our
sensor data recorder is implemented as an executable fle that can
run on a portable computer (Raspberry Pi). The sensor database
builder is implemented in Processing.

Loading Sensor Information from Sensor Database: When
makers open the SensorViz editor, SensorViz retrieves all the sensor
information from the SensorViz sensor database by parsing the
JSON fle. It also retrieves the sensor 3D model by matching the
3D model name in the JSON fle with the sensor model titles in the
Sparkfun 3D Model Component Library [26].

Visualizing Sensor Data: After loading the sensor specifca-
tion, SensorViz creates the visualization by matching the sensor
attributes with the visualization primitives. To position non-spatial
data next to the sensor, SensorViz retrieves the 3D model’s center
and then ofsets the visualization accordingly. To position spatial
data, such as sensing volumes, in the direction the sensor is facing,
SensorViz retrieves the normal vector of the plane of the sensor
model. This information is provided by the Sparkfun 3D model
library and always faces forward relative to the orientation of the
sensor. To compute how to segment the visualization according to
the sensor resolution, SensorViz frst computes the sensor’s reso-
lution as described in section ’Visualization Attributes’ and then
maps it onto the bar or volume. To visualize the current sensor

995

DIS ’22, June 13–17, 2022, Virtual Event, Australia Kim, et al.

Figure 12: SensorViz system workfow.

value, SensorViz creates an additional geometry on top of the ex-
isting visualization primitive and sets its height to be the current
sensor value and its appearance to be opaque. SensorViz displays
text as 3D text labels and places them at diferent ofsets from the
sensor’s center, based on the type of label. To color a visualization,
SensorViz connects the geometry of the visualization to the ’Gradi-
ent’ attribute in Grasshopper. To visualize metaphors, SensorViz
takes as input a custom 3D geometry and then connects it to an
animation that is driven by the sensor value.

AR visualization: To start the AR visualization in Fologram [13]
from the SensorViz user interface, we wrote a custom python script.
To visualize sensor data from Grasshopper in AR, SensorViz con-
nects each visualization primitive’s geometry to Fologram’s ’Sync’
module. Using ’Sync,’ Fologram then transfers each change in the
3D editor to the AR overlay in real-time.

Reading Live Sensor Values: To receive live data from the mi-
crocontroller, SensorViz uses Grasshopper’s Firefy plugin, which
reads data from the serial monitor. Once data is incoming, SensorViz
analyzes its prefx and then connects it to the corresponding at-
tribute in the sensor’s visualization. Finally, SensorViz connects the
attribute to the geometry of the visualization primitive to display
the changing data values.

Recording Sensing Data: When data needs to be recorded,
SensorViz writes the incoming sensor values into a text fle (.txt)

together with a timestamp of when the data was received. To vi-
sualize the recorded data later, SensorViz reads the text fle and
visualizes the sensor data at the recorded time intervals.

Sensing Area Overlap: To compute how much a sensor’s feld
of view and the sensing area overlap, SensorViz iterates over all
sensors and uses Grasshopper’s mesh intersection function to de-
termine the amount of coverage.

7 USER STUDY
We conducted a user study to understand how SensorViz’s visual-
ization can help makers during the diferent stages of prototyping
with sensors. We compared prototyping with the SensorViz visual-
izations (datasheet visualization, AR overlay, live data visualization)
to a baseline condition, in which the SensorViz editor was provided
but all visualizations were turned of and the participants had access
to the sensors and their datasheets.

Participants: We recruited twelve novice makers, 10 male and
2 female, aged 24-30 years (M=26.8, SD=2.3), who are students with
industrial design backgrounds from our institution. All of them had
some experience prototyping with sensors, i.e., had completed 2-5
previous projects but did not consider themselves experts. Partici-
pants were compensated with 10 USD in local currency.

Conditions: In the SensorViz condition, participants were given
the SensorViz 3D editor with all visualizations enabled, i.e., they
were able to access the datasheet visualization, sensor data overlay
over the physical prototype via AR, and live data visualization. In
the baseline condition, participants were given the SensorViz editor
with all visualizations turned of. In both conditions, participants
were able to place digital sensor 3D models on the virtual prototype
geometry. The study was run as a between-subjects study, and
participants were randomly assigned to a condition.

Task: Participants were asked to build a smart lamp that can
automatically turn on/of and direct its light toward the user. The
lamp we gave participants already consisted of a robotic arm as the
stand to orient the light and a ring-shaped LED strip for turning
on/of the light. Participants were asked to extend the prototype to
add four features: (1) the lamp orients itself to the user when the
user is within 2 meters to the lamp, (2) the lamp lights up when
the user is within a distance of 1 meter to the lamp, (3) the lamp
gets brighter when the room gets darker, and (4) the light color
changes according to the temperature in the room. To avoid falsely
detecting the table, we asked participants to augment the lamp
to sense within a range of 76cm - 150cm height (Figure 13a). In
addition, since the lamp was sitting on a desk that was in a corner
of a room, it only needed to sense the area towards the front and
right side (90 degrees) (Figure 13b). For prototyping their solution,
participants were asked to determine the best sensor layout, i.e.,
the layout that used the fewest sensors and had the best coverage.

We provided participants with six diferent distance sensors
(APDS-9960, GP2Y0E03, LV-EZ1, TOF10120, VL53l0X, and VL6180),
a temperature sensor (TMP102), and a photoresistor (CdS-5528). To
refect the diferent prototyping stages, we frst simulated selecting
sensors before buying them and before having them physically
available. For this, the control group had access to regular datasheets

996

SensorViz: Visualizing Sensor Data Across Diferent Stages of Prototyping Interactive Objects DIS ’22, June 13–17, 2022, Virtual Event, Australia

and the SensorViz group had access to the SensorViz datasheet
visualization. After this, we simulated that the sensors had arrived
and participants were now allowed to physically place sensors and
access the live data visualization on the Serial monitor (control
group) or for the SensorViz group inside the SensorViz editor and
via AR overlay. Participants decided how they wanted to split their
time between using the digital 3D editor and building the physical
prototype. For the fnal deliverable, we asked participants to mirror
their fnal design both on the digital and the physical prototype.

Resources: Participants in both conditions were provided with
datasheets of each sensor. In addition, participants were allowed
to search for information on the internet. For digital prototyping,
we prepared a digital scene with the 3D model of the lamp on a
table set up against the corner of a room that mirrored the physical
setup. We also provided the eight diferent sensors in the SensorViz
editor. For physical prototyping, we provided the physical lamp and
the eight diferent sensors, three copies of each in case participants
needed multiple sensors of the same type. The sensors were already
wired to one microcontroller each (Arduino Uno) and had the code
uploaded for providing both live data in the SensorViz editor and
alternatively the Arduino serial monitor. To see multiple sensors’
data at the same time, all Arduinos were connected simultaneously
to a USB hub and participants were able to see the live data of
each sensor by selecting the serial port for each Arduino. In the
SensorViz condition, participants used a tablet in case they wanted
to visualize sensor data via AR.

Study Procedure: We gave participants a short introduction to
the editor they were using in their assigned condition and showed
them the available resources. We explained the task with a picture
that showed the target sensing area. Participants then built their
prototypes for up to 120 minutes. Participants were allowed to
end the task anytime they were satisfed with their prototype. At
the end, we conducted a 30-minute semi-structured interview. The
experiment took 2.5 hours.

Data Collection: To design and prototype interactive objects,
makers iterate between exploring, implementing, and testing. We

collected data about the time efciency of prototyping to evaluate
if SensorViz enhances the prototype’s quality by helping makers to
prototype faster, which allows them to produce more iterations in
the same amount of time. Referencing evaluation factors presented
in previous works [16, 17], we measured task completion time, time
spent for selecting sensors, and the number of times participants
switched sensors during the prototyping process. Participants were
allowed to exchange sensors throughout the prototyping process
until they found the best sensor layout for the task. We also collected
every participants’ digital 3D model and documented the sensor
layout on the physical prototype. To evaluate how well the sensor
layout covers the target sensing areas (i.e., at 1m distance and 2m
distance from the lamp), we compute the coverage of each of the
two sensing areas in m2 using the position of the sensors in the
digital editor. We also measured if the placement of the light sensor
picked up only the ambient light or was infuenced by the lamp
light, i.e., if the light sensor had the same value independent of the
lamp being on/of. Finally, we measured if the temperature sensor
picked up only the heat from the room or also heat generated by
the LED light ring of the lamp and the motors from the robotic
lamp stand.

Quantitative Results: We analyzed the raw data using one-way
ANOVA tests followed by Bonferroni correction post hoc analysis
with α=0.05. Results are shown in Figure 14.

Prototyping Speed: All participants completed the task within
120 minutes. Overall, participants in the SensorViz group were
faster than the baseline group with an average completion time of
34m 34s (SD: 10m 57s) versus 1h 5m 40s (SD: 25m 21s) (F(1,10) =
7.61, p < 0.05) (Figure 14d). For selecting an initial set of sensors to
start the frst prototyping round, participants in the SensorViz group
were also faster than the baseline group with an average of 6m 46s
(SD: 3m 27s) versus 33m 50s (SD: 21m 53s) (F(1,10) = 8.95, p < 0.05)
(Figure 14e).

Number of Iterations for Selecting Sensors: Participants in the
SensorViz group needed to iterate less on which sensors to use, i.e.
they replaced 1 sensor (M = 0.17, SD = 0.41) vs. the baseline group

Figure 13: SensorViz evaluation study setup: (a) sensing area within a range of 76cm - 150cm height. (b) the lamp senses the
area towards the front and right side (90 degrees). (c) the lamp’s initial shape before sensing the user. (d) the lamp orients itself
to the user when the user is within 2 meters to the lamp.

997

DIS ’22, June 13–17, 2022, Virtual Event, Australia Kim, et al.

Figure 14: SensorViz study results: Overlap of sensing area with the sensor’s feld-of-view in (a) total, (b) 1-meter task, and
(c) 2-meter task. Self-assessed (d) completion time and (e) initial sensor selection time. (f) Shows the number of iterations for
selecting sensors and (g) the accuracy of the light sensor and temperature sensor placement.

replaced 17 sensors (M = 2.83, SD = 0.75) (F(1,10) = 58.18,p <
0.001) (Figure 14f).

Coverage of Sensing Area: We measured the coverage of the two
sensing areas (1 meter, 2 meters) with the distance sensors. In
the 1-meter distance task (Figure 14b) where the target sensing
area was 1.16m2, the SensorViz group had 27.34% coverage (M =
0.32m2 , SD = 0.04m2) which is signifcantly better compared to the
baseline group which had coverage of 10.74% (M = 0.13m2 , SD =
0.07m2) (F(1,10) = 37.09,p < 0.001). This was also true for the
2-meter task (Figure 14c) where the target sensing area was 2.32m2

with signifcant diferences for the SensorViz group which had
coverage of 34.49% (M = 0.8m2 , SD = 0.08m2) vs. baseline group

2which had coverage of 13.79% (M = 0.32m , SD = 0.15m2) (F(1,10) =
48.13, p < 0.001). Thus, overall, SensorViz participants achieve a
target sensing coverage of 32.1% vs. the baseline which achieved
12.8% (Figure 14a).

Number of Sensors: Though we did not restrict the number of
sensors that participants could use, all the participants used the
same number of sensors. Participants have used two sensors for
the 1-meter task, two sensors for the 2-meter task, a temperature
sensor, and a photoresistor.

Placement of Light Sensor and Temperature Sensor: We found
that there was no diference in how accurately participants in both
conditions placed the light and the temperature sensor. In both
conditions, for all participants, the light sensor did not pick up any
of the lamp light and the temperature sensor did not pick up any
of the heat from the motors or the lamp (Figure 14g).

In summary, for the spatial distance sensors, SensorViz partici-
pants achieved 252% higher coverage as in the baseline condition
(254.5% for 1 meter, and 250.1% for 2 meters), but for the non-spatial
light and temperature sensors, there was no diference between Sen-
sorViz and the baseline. Finally, participants who used SensorViz
placed sensors 190% faster than the baseline condition.

Qualitative Results: We analyzed our post-study interviews by
transcribing the audio/video recordings (total: 3 h 35 min material)
and then conducting open and axial coding. In the semi-structured
interviews, we asked participants to refect on their prototyping
process, i.e., what was the most challenging part and how they
overcame the difculties. We also inquired about the use of each of
the provided visualizations and other provided resources.

Simplifying the prototyping process by minimizing trial and error:
Participants in the SensorViz group highlighted that SensorViz
helped them to reduce the number of iterations on the physical
prototype. For instance, P11 stated: “in the process of choosing a
location, we can [...] virtually attach the sensor and test it, so it can
greatly reduce the [physical] prototyping process that actually takes
the most amount of time.” Similarly, P2 stated: “before testing the
sensor, the process to look at the document [data sheet] and choose
it is long, and trial-and-error happens, but I think this [SensorViz]
will allow trial-and-errors to decrease a lot.”

Preventing Late Model Changes: Participants pointed out that it
was helpful that they were able to modify the prototype geometry in
the 3D editor while also seeing the sensor information. Participants
noted that this feature was particularly useful to decide on sensor
placement “before the prototype’s shape is fnalized” (P5) and that
“placing the sensor and editing the model early on” (P5) helped to
prevent further changes down the line when the prototype was
already 3D printed. Another participant said “it was good that in
the beginning of prototyping [...], we could edit the model while
looking at the sensor location” (P7).

Benefcial to collaborative prototyping: Participants (P10, P11)
also reported SensorViz could aid makers in collaborating with
others, saying: “working with a team, we could end up dividing
the hardware and model designs. But with this [SensorViz], we
do not have to wait until the hardware is made, so it is helpful
that we could try modeling frst by visualizing the sensor in the
software” (P10). P11 noted: “When collaborating, there are many
times, especially when sharing the work of making the hardware,
when you have to wait for the rest of it to be complete, but for this

998

SensorViz: Visualizing Sensor Data Across Diferent Stages of Prototyping Interactive Objects DIS ’22, June 13–17, 2022, Virtual Event, Australia

[SensorViz] it was good that none of that was necessary and we
could try it immediately.”

Advantages of diferent sensor visualizations during prototyping:
Participants mentioned that SensorViz’s visualizations aided them
in various ways in the prototyping process. P8 and P11 noted that
SensorViz’ datasheet visualization “was helpful [...] because we
could see the sensor shape or the [sensing] area directly from the
software” (P11) and allowed them to “easily see the blind spots” (P8).
P8 also stated that the live data visualization was useful for testing
sensors, saying: “In particular, when testing if this really detected in
this area, the function that showed the live data showed the space
immediately, so it was used very efectively”. Participants who used
the AR visualization to place sensors on the physical prototype
reported that “It was nice to be able to attach it to the exact location
[...] by looking at it using AR” (P7) and suggested using an AR
headset instead of the tablet to have both hands free for mounting
the sensors: “because it was a tablet, it was uncomfortable to try
to attach it [the sensor] with one hand.” Moreover, participants
(P2, P8, P11) appreciated that the AR visualization assisted them in
testing the sensors in context, saying: “what I liked most was the
target area display using AR, which I think was the functionality I
used most enthusiastically [...] I see 1 meter after setting it as the
target area, and if the sensor detection area covers it or not [...] the
test was much easier and precisely controllable” (P8). “Because the
detection range is shown by AR, [...] I can check whether there is a
collision between the sensor’s FOV and target area [...] accuracy is
quite important for shape-changing objects, so this visual feedback
was very helpful” (P2).

Archiving the prototyping progress: P5 stated that SensorViz al-
lows users to save the history of their prototyping progress, saying:
“since this is a graphic editing tool, it seems like it would be good
to archive the work in the middle.”

Non-spatial sensors’ visualization: Participants (P5, P7, P11) re-
ported that the photoresistor and the temperature sensor’s “data is
simple enough to use the serial to look at it” (P5), still SensorViz was
benefcial because “it is intuitive to have the information foated
right above the sensor” (P11). P7 also mentioned the inconvenience
of reading data from the serial monitor, saying: “the text moves
quickly upward and the diferent sensors show up alternating, so it
is sometimes difcult to follow.”

In summary, our user study showed that SensorViz speeded up
the prototyping process by minimizing trial and error in selecting
and testing sensors. For the non-spatial sensors, though there was
no signifcant diference between groups, still participants appre-
ciated displaying the sensor data next to the sensor. Also, there
is the opportunity of assisting users in collaborative prototyping
and preventing late model changes by enabling users to modify
the prototype geometry in the 3D editor while seeing the sensor
visualization.

8 LIMITATIONS AND FUTURE WORK
There are several avenues to further improve SensorViz.

Validating the Design Space with Additional Sensors: Currently,
SensorViz only supports specifc types of sensors (temperature, hu-
midity, distance, hall efect, and wind sensors, as well as accelerom-
eters and gyroscopes). While these sensors are representatives of
particular sensor categories (non-spatial, directional, and spatial
sensors), adding more sensors will help to further validate the de-
sign space of visualization primitives. In addition, although the
visualization primitives and visualization have been designed to
support the most type of sensors used, the scalability of sensor
visualization has not been tested. For future work, we will study
the scalability of sensor visualization with our suggested sensor
visualization primitives.

Automatically Processing Datasheets: When makers want to add a
new sensor to SensorViz, they currently have to manually transfer
the data from the datasheet. For future work, we plan to automati-
cally extract this information from the pdfs of the datasheets.

Manual vs. Automatic Sensor Placement: We initially considered
automating the sensor placement. However, we found that sensor
placement is a task that requires user input since it also afects
the design of the prototype. While algorithms can suggest optimal
placement with respect to sensing coverage, taking aesthetics into
account is difcult to automate. Algorithms would also require
knowing the fnal object geometry, whereas makers may adjust sen-
sors and object geometry in tandem to achieve the desired design.

Interactivity of AR visualization: While makers can visualize
sensor data in AR and toggle the visualizations of each sensor
on/of, adjustments to the sensor layout can only be made through
the SensorViz 3D editor. For future work, we will add bidirectional
interaction so that changes in AR are refected in the 3D editor as
well.

Visualizing Efects of Electronic Components on Sensors: Electronic
components, such as capacitors added to sensors, can change the
sensed values. We did not include a feature that shows the combined
efect of electronic components since our target users are novice
makers. For instance, all students in our introductory electronics
class used standalone sensor modules that did not require extra
fltering with capacitors.

Simulating Environmental Data: Our paper focuses on developing
sensor visualizations for the diferent stages of prototyping. Since
the visualization primitives for the sensors are the same for live
data as for simulation, we did not include a simulation feature in
our visualization tool. However, a feature for simulating sensor
data can be added as future work.

Integrating Circuit Layout Functionality: Participants in our user
study pointed out that they would like to not only place sensors
but also to build the entire circuit as part of the editing process. For
future work, we will add functionality that allows makers to place
the sensors and also build the entire circuit on the 3D geometry
(e.g., SurfCuit [32], MorphSensor [36]).

Social Aspects of Prototyping: Some participants in our formative
study mentioned that they frequently asked other makers to solve
issues collaboratively while prototyping with sensors. Previous HCI
research explored the collaborative aspect for prototyping [6, 30]

999

DIS ’22, June 13–17, 2022, Virtual Event, Australia Kim, et al.

and we plan to investigate in future work how to support collab-
orative prototyping with our system by facilitating conversation
between makers about various sensor choices and placement op-
tions.

9 CONCLUSION
In this paper, we presented SensorViz, an interactive visualization
tool that supports makers with diferent visualizations of sensor
data throughout the various stages of the prototyping process. We
discussed the results from our formative study with 12 makers that
showed makers experience difculties when creating prototypes us-
ing sensors. We then demonstrated how SensorViz addresses these
challenges by visualizing information from the sensor’s datasheet,
overlaying sensor information, and providing live sensor data. We
discussed how our library of visualization primitives, together with
our sensor database builder, allows makers to add new sensors. We
then reported results from our user study that showed that Sen-
sorViz signifcantly reduces prototyping time while also enabling
makers to place sensors more efectively, in a way that they cover
a larger portion of the target sensing area. For future work, we
plan to improve the system by automatically parsing datasheets
and enabling changes in the sensor layout directly in AR.

ACKNOWLEDGMENTS
This work has supported by the National Research Foundation of
Korea (NRF) grant funded by the Korea government (MSIT) (No.
2022R1C1C101196211).

REFERENCES
[1] Fraser Anderson, Tovi Grossman, and George Fitzmaurice. 2017. Trigger-Action-

Circuits: Leveraging Generative Design to Enable Novices to Design and Build
Circuitry. In Proceedings of the 30th Annual ACM Symposium on User Interface
Software and Technology (Québec City, QC, Canada) (UIST ’17). Association for
Computing Machinery, New York, NY, USA, 331–342. https://doi.org/10.1145/
3126594.3126637

[2] Daniel Ashbrook, Shitao Stan Guo, and Alan Lambie. 2016. Towards Augmented
Fabrication: Combining Fabricated and Existing Objects. In Proceedings of the
2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems
(San Jose, California, USA) (CHI EA ’16). Association for Computing Machinery,
New York, NY, USA, 1510–1518. https://doi.org/10.1145/2851581.2892509

[3] AUTODESK. 2019. TINKERCAD. https://www.tinkercad.com/
[4] Elham Beheshti, David Kim, Gabrielle Ecanow, and Michael S. Horn. 2017.

Looking Inside the Wires: Understanding Museum Visitor Learning with an
Augmented Circuit Exhibit. In Proceedings of the 2017 CHI Conference on Hu-
man Factors in Computing Systems (Denver, Colorado, USA) (CHI ’17). Asso-
ciation for Computing Machinery, New York, NY, USA, 1583–1594. https:
//doi.org/10.1145/3025453.3025479

[5] Tracey Booth, Simone Stumpf, Jon Bird, and Sara Jones. 2016. Crossed Wires:
Investigating the Problems of End-User Developers in a Physical Computing Task.
In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
(San Jose, California, USA) (CHI ’16). Association for Computing Machinery, New
York, NY, USA, 3485–3497. https://doi.org/10.1145/2858036.2858533

[6] Adrien Bousseau, Theophanis Tsandilas, Lora Oehlberg, and Wendy E. Mackay.
2016. How Novices Sketch and Prototype Hand-Fabricated Objects. In Proceedings
of the 2016 CHI Conference on Human Factors in Computing Systems (San Jose,
California, USA) (CHI ’16). Association for Computing Machinery, New York, NY,
USA, 397–408. https://doi.org/10.1145/2858036.2858159

[7] N Bressa, H Korsgaard, A Tabard, S Houben, and J Vermeulen. 2022. What’s the
Situation with Situated Visualization? A Survey and Perspectives on Situatedness.
In IEEE Trans Vis Comput Graph. (Toronto, Ontario, Canada) (vol. 28,1). 107–117.
https://doi.org/10.1109/TVCG.2021.3114835

[8] Marion Buchenau and Jane Fulton Suri. 2000. Experience Prototyping. In Pro-
ceedings of the 3rd Conference on Designing Interactive Systems: Processes, Prac-
tices, Methods, and Techniques (New York City, New York, USA) (DIS ’00). As-
sociation for Computing Machinery, New York, NY, USA, 424–433. https:
//doi.org/10.1145/347642.347802

[9] Joshua Chan, Tarun Pondicherry, and Paulo Blikstein. 2013. LightUp: An Aug-
mented, Learning Platform for Electronics. In Proceedings of the 12th Interna-
tional Conference on Interaction Design and Children (New York, New York, USA)
(IDC ’13). Association for Computing Machinery, New York, NY, USA, 491–494.
https://doi.org/10.1145/2485760.2485812

[10] Kayla DesPortes, Aditya Anupam, Neeti Pathak, and Betsy DiSalvo. 2016. Bit-
Blox: A Redesign of the Breadboard. In Proceedings of the The 15th International
Conference on Interaction Design and Children (Manchester, United Kingdom)
(IDC ’16). Association for Computing Machinery, New York, NY, USA, 255–261.
https://doi.org/10.1145/2930674.2930708

[11] Daniel Drew, Julie L. Newcomb, William McGrath, Filip Maksimovic, David
Mellis, and Björn Hartmann. 2016. The Toastboard: Ubiquitous Instrumentation
and Automated Checking of Breadboarded Circuits. In Proceedings of the 29th
Annual Symposium on User Interface Software and Technology (Tokyo, Japan)
(UIST ’16). Association for Computing Machinery, New York, NY, USA, 677–686.
https://doi.org/10.1145/2984511.2984566

[12] Alix Ducros, Clemens N. Klokmose, and Aurélien Tabard. 2019. Situated Sketching
and Enactment for Pervasive Displays. In Proceedings of the 2019 ACM Interna-
tional Conference on Interactive Surfaces and Spaces (Daejeon, Republic of Korea)
(ISS ’19). Association for Computing Machinery, New York, NY, USA, 217–228.
https://doi.org/10.1145/3343055.3359702

[13] Fologram. 2021. Fologram. https://www.fologram.com
[14] Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and Wolfgang Pree. 2011.

BlenSor: Blender sensor simulation toolbox. In International Symposium on Visual
Computing. Springer, 199–208. https://doi.org/10.1007/978-3-642-24031-7_20

[15] Michael D. Jones, Zann Anderson, Casey Walker, and Kevin Seppi. 2018. PHUI-Kit:
Interface Layout and Fabrication on Curved 3D Printed Objects. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems (Montreal
QC, Canada) (CHI ’18). Association for Computing Machinery, New York, NY,
USA, 1–11. https://doi.org/10.1145/3173574.3173684

[16] Yoonji Kim, Youngkyung Choi, Daye Kang, Minkyeong Lee, Tek-Jin Nam, and
Andrea Bianchi. 2019. HeyTeddy: Conversational Test-Driven Development for
Physical Computing. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 3, 4,
Article 139 (dec 2019), 21 pages. https://doi.org/10.1145/3369838

[17] Yoonji Kim, Youngkyung Choi, Hyein Lee, Geehyuk Lee, and Andrea Bianchi.
2019. VirtualComponent: A Mixed-Reality Tool for Designing and Tuning Bread-
boarded Circuits. In Proceedings of the 2019 CHI Conference on Human Factors in
Computing Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing
Machinery, New York, NY, USA, 1–13. https://doi.org/10.1145/3290605.3300407

[18] Yoonji Kim, Hyein Lee, Ramkrishna Prasad, Seungwoo Je, Youngkyung Choi,
Daniel Ashbrook, Ian Oakley, and Andrea Bianchi. 2020. SchemaBoard: Sup-
porting Correct Assembly of Schematic Circuits Using Dynamic In-Situ Visual-
ization. Association for Computing Machinery, New York, NY, USA, 987–998.
https://doi.org/10.1145/3379337.3415887

[19] David Ledo, Jo Vermeulen, Sheelagh Carpendale, Saul Greenberg, Lora Oehlberg,
and Sebastian Boring. 2019. Astral: Prototyping Mobile and Smart Object In-
teractive Behaviours Using Familiar Applications. In Proceedings of the 2019
on Designing Interactive Systems Conference (San Diego, CA, USA) (DIS ’19).
Association for Computing Machinery, New York, NY, USA, 711–724. https:
//doi.org/10.1145/3322276.3322329

[20] Woojin Lee, Ramkrishna Prasad, Seungwoo Je, Yoonji Kim, Ian Oakley, Daniel
Ashbrook, and Andrea Bianchi. 2021. VirtualWire: Supporting Rapid Prototyping
with Instant Reconfgurations of Wires in Breadboarded Circuits. In Proceedings
of the Fifteenth International Conference on Tangible, Embedded, and Embodied
Interaction (Salzburg, Austria) (TEI ’21). Association for Computing Machinery,
New York, NY, USA, Article 4, 12 pages. https://doi.org/10.1145/3430524.3440623

[21] Germán Leiva, Jens Emil Grønbæk, Clemens Nylandsted Klokmose, Cuong
Nguyen, Rubaiat Habib Kazi, and Paul Asente. 2021. Rapido: Prototyping In-
teractive AR Experiences through Programming by Demonstration. In The 34th
Annual ACM Symposium on User Interface Software and Technology (Virtual Event,
USA) (UIST ’21). Association for Computing Machinery, New York, NY, USA,
626–637. https://doi.org/10.1145/3472749.3474774

[22] Jo-Yu Lo, Da-Yuan Huang, Tzu-Sheng Kuo, Chen-Kuo Sun, Jun Gong, Teddy
Seyed, Xing-Dong Yang, and Bing-Yu Chen. 2019. AutoFritz: Autocomplete
for Prototyping Virtual Breadboard Circuits. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems (Glasgow, Scotland Uk)
(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1–13.
https://doi.org/10.1145/3290605.3300633

[23] Will McGrath, Daniel Drew, Jeremy Warner, Majeed Kazemitabaar, Mitchell
Karchemsky, David Mellis, and Björn Hartmann. 2017. BifröSt: Visualizing and
Checking Behavior of Embedded Systems across Hardware and Software. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing Ma-
chinery, New York, NY, USA, 299–310. https://doi.org/10.1145/3126594.3126658

[24] Iulian Radu, Tugce Joy, and Bertrand Schneider. 2021. Virtual Makerspaces: Merg-
ing AR/VR/MR to Enable Remote Collaborations in Physical Maker Activities. In
Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Sys-
tems (Yokohama, Japan) (CHI EA ’21). Association for Computing Machinery, New
York, NY, USA, Article 202, 5 pages. https://doi.org/10.1145/3411763.3451561

1000

https://doi.org/10.1145/3126594.3126637
https://doi.org/10.1145/3126594.3126637
https://doi.org/10.1145/2851581.2892509
https://www.tinkercad.com/
https://doi.org/10.1145/3025453.3025479
https://doi.org/10.1145/3025453.3025479
https://doi.org/10.1145/2858036.2858533
https://doi.org/10.1145/2858036.2858159
https://doi.org/10.1109/TVCG.2021.3114835
https://doi.org/10.1145/347642.347802
https://doi.org/10.1145/347642.347802
https://doi.org/10.1145/2485760.2485812
https://doi.org/10.1145/2930674.2930708
https://doi.org/10.1145/2984511.2984566
https://doi.org/10.1145/3343055.3359702
https://www.fologram.com
https://doi.org/10.1007/978-3-642-24031-7_20
https://doi.org/10.1145/3173574.3173684
https://doi.org/10.1145/3369838
https://doi.org/10.1145/3290605.3300407
https://doi.org/10.1145/3379337.3415887
https://doi.org/10.1145/3322276.3322329
https://doi.org/10.1145/3322276.3322329
https://doi.org/10.1145/3430524.3440623
https://doi.org/10.1145/3472749.3474774
https://doi.org/10.1145/3290605.3300633
https://doi.org/10.1145/3126594.3126658
https://doi.org/10.1145/3411763.3451561

SensorViz: Visualizing Sensor Data Across Diferent Stages of Prototyping Interactive Objects DIS ’22, June 13–17, 2022, Virtual Event, Australia

[25] Iulian Radu and Bertrand Schneider. 2019. What Can We Learn from Augmented
Reality (AR)? Benefts and Drawbacks of AR for Inquiry-Based Learning of
Physics. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (Glasgow, Scotland Uk) (CHI ’19). Association for Computing Machinery,
New York, NY, USA, 1–12. https://doi.org/10.1145/3290605.3300774

[26] Sparkfun. 2019. Sparkfun 3D Model Component Library. https://github.com/
sparkfun/3D_Models

[27] Stanford Artifcial Intelligence Laboratory et al. [n.d.]. Robotic Operating System.
https://www.ros.org

[28] Evan Strasnick, Maneesh Agrawala, and Sean Follmer. 2017. Scanalog: Interac-
tive Design and Debugging of Analog Circuits with Programmable Hardware. In
Proceedings of the 30th Annual ACM Symposium on User Interface Software and
Technology (Québec City, QC, Canada) (UIST ’17). Association for Computing Ma-
chinery, New York, NY, USA, 321–330. https://doi.org/10.1145/3126594.3126618

[29] Inc. The MathWorks. 1994. Sensor Fusion and Tracking. https://www.mathworks.
com/products/sensor-fusion-and-tracking.html

[30] Austin L. Toombs. 2017. Hackerspace Tropes, Identities, and Community Values.
In Proceedings of the 2017 Conference on Designing Interactive Systems (Edinburgh,
United Kingdom) (DIS ’17). Association for Computing Machinery, New York,
NY, USA, 1079–1091. https://doi.org/10.1145/3064663.3064760

[31] Dishita G Turakhia, Andrew Wong, Yini Qi, Lotta-Gili Blumberg, Yoonji Kim,
and Stefanie Mueller. 2021. Adapt2Learn: A Toolkit for Confguring the Learning
Algorithm for Adaptive Physical Tools for Motor-Skill Learning. In Designing
Interactive Systems Conference 2021 (Virtual Event, USA) (DIS ’21). Association
for Computing Machinery, New York, NY, USA, 1301–1312. https://doi.org/10.

1145/3461778.3462128
[32] Nobuyuki Umetani and Ryan Schmidt. 2017. SurfCuit: Surface-Mounted Circuits

on 3D Prints. IEEE Computer Graphics and Applications 37, 3 (2017), 52–60.
https://doi.org/10.1109/MCG.2017.40

[33] Tianyi Wang, Ke Huo, Pratik Chawla, Guiming Chen, Siddharth Banerjee, and
Karthik Ramani. 2018. Plain2Fun: Augmenting Ordinary Objects with Surface
Painted Circuits. In Extended Abstracts of the 2018 CHI Conference on Human
Factors in Computing Systems (Montreal QC, Canada) (CHI EA ’18). Association
for Computing Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/
3170427.3188655

[34] Te-Yen Wu, Hao-Ping Shen, Yu-Chian Wu, Yu-An Chen, Pin-Sung Ku, Ming-Wei
Hsu, Jun-You Liu, Yu-Chih Lin, and Mike Y. Chen. 2017. CurrentViz: Sensing and
Visualizing Electric Current Flows of Breadboarded Circuits. In Proceedings of the
30th Annual ACM Symposium on User Interface Software and Technology (Québec
City, QC, Canada) (UIST ’17). Association for Computing Machinery, New York,
NY, USA, 343–349. https://doi.org/10.1145/3126594.3126646

[35] Junyi Zhu, Lotta-Gili Blumberg, Yunyi Zhu, Martin Nisser, Ethan Levi Carlson,
Xin Wen, Kevin Shum, Jessica Ayeley Quaye, and Stefanie Mueller. 2020. Curve-
Boards: Integrating Breadboards into Physical Objects to Prototype Function in the
Context of Form. Association for Computing Machinery, New York, NY, USA,
1–13. https://doi.org/10.1145/3313831.3376617

[36] Junyi Zhu, Yunyi Zhu, Jiaming Cui, Leon Cheng, Jackson Snowden, Mark Choun-
lakone, Michael Wessely, and Stefanie Mueller. 2020. MorphSensor: A 3D Electronic
Design Tool for Reforming Sensor Modules. Association for Computing Machinery,
New York, NY, USA, 541–553. https://doi.org/10.1145/3379337.3415898

1001

https://doi.org/10.1145/3290605.3300774
https://github.com/sparkfun/3D_Models
https://github.com/sparkfun/3D_Models
https://www.ros.org
https://doi.org/10.1145/3126594.3126618
https://www.mathworks.com/products/sensor-fusion-and-tracking.html
https://www.mathworks.com/products/sensor-fusion-and-tracking.html
https://doi.org/10.1145/3064663.3064760
https://doi.org/10.1145/3461778.3462128
https://doi.org/10.1145/3461778.3462128
https://doi.org/10.1109/MCG.2017.40
https://doi.org/10.1145/3170427.3188655
https://doi.org/10.1145/3170427.3188655
https://doi.org/10.1145/3126594.3126646
https://doi.org/10.1145/3313831.3376617
https://doi.org/10.1145/3379337.3415898

	Abstract
	1 Introduction
	2 Related Work
	2.1 Prototyping Interactive Objects
	2.2 Integrating Electronics with 3D Prototypes
	2.3 Visualization in Prototyping and Situated Visualization

	3 Formative study
	4 SensorViz
	4.1 Visualizations for Different Stages of Prototyping with Sensors
	4.2 Prototyping Walkthrough

	5 Library of Visualization Primitives
	5.1 Visualization Attributes
	5.2 Additional Visualizations Attributes
	5.3 Composition of Visualization Primitives
	5.4 Sensor Database Builder

	6 Implementation
	7 User Study
	8 Limitations and future work
	9 Conclusion
	Acknowledgments
	References

